RADIOMIC: PREDICTION OF ACOUSTIC NEUROMA RESPONSE TO THE CYBERKNIFE TREATMENT

I. BOSSI ZANETTI¹, N.C. D'AMICO¹, E. GROSSI², G. VALBUSÀ², D. FAZZINI¹, A. BERGANTIN¹, I. REDAELLI¹,
A.S. MARTINOTTI¹, C. IEZZONI³ G. SCOTTI², L. FARISELLI³, S. PAPA¹, G. BELTRAMO¹

¹CENTRO DIAGNOSTICO ITALIANO, UNITA' DI IMAGING DIAGNOSTICO E RADIOCHIRURGIA STEREOTASSICA, MILANO, ITALY
²BRACCO IMAGING S.P.A, IMAGING, MILANO, ITALY.
³UNITA' OPERATIVA DI RADIOTERAPIA, FONDAZIONE IRCCS ISTITUTO NEUROLOGICO CARLO BESTA, MILANO, ITALY

Milan, 25 October 2019
ACOUSTIC NEUROMA

Primitive, benign tumor of the Schwann cells of the eighth cranial nerve

Rare and slow growing (1-2mm / year)

Overall incidence 1/100000 in the United States

Symptoms (depending on the tumor size)

Early and common: unilateral hearing loss, tinnitus, and unsteadiness

Late: Trigeminal or Facial nerve disfunction, brainstem compression
MANAGEMENT

Quality of life & Cranial nerves function preservation

Surgery
- Tumor >2-3 cm
- Symptomatic

Wait and see
- Stable disease
- Asymptomatic

Stereotactic Radiotherapy/Radiosurgery
- Tumor < 2-3 cm
- Progression Disease

Excellent long-term local control (92 - 100%), high rate of preservation of trigeminal (92 - 100%) and facial (94 - 100%) functions.

MRI follow-up with contrast enhancement
The aim of the study is to use a radiomic approach to evaluate the possibility of predicting the response of an acoustic neuroma to Cyberknife® radiotherapy analyzing pre treatment MRI images.

Responder | Non responder
STUDY POPULATION

- Axial T1w 3D MRI with contrast enhancement acquired before Cyberknife
- Slice thickness 1 mm
- 2 Different Scanner (Philips Achieva 1.5T, GE Signa 1.5T)

Inclusion
- Monolateral
- Follow-up of at least 10 months
- Follow-up MRI with contrast enhancement

Exclusion
- Previous Treatments
- Neuroma on other cranial nerves
- Neurofibromatosis
STUDY POPULATION

- 38 Patients (2004 – 2016)
 - 25 volumetric reduction, 10 stable disease, 3 volumetric increase at last follow-up.
- Mean follow-up: 52 months (range: 10-105)
- Mean age: 61 years (30-87 years)
- Mean Dose: 18 Gy / 3 fractions
- Mean volume 2.7 cm³ (0.25 – 11.8)

<table>
<thead>
<tr>
<th>Study population</th>
<th>Total population</th>
<th>reduction</th>
<th>stable</th>
<th>increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Patients</td>
<td>38</td>
<td>25</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>18</td>
<td>11</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>20</td>
<td>14</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Age (at treatment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>50-70</td>
<td>14</td>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>70-90</td>
<td>14</td>
<td>10</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Mean Age</td>
<td>61.2</td>
<td>63</td>
<td>58.3</td>
<td>56.3</td>
</tr>
<tr>
<td>Length of Follow-up (months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><36</td>
<td>13</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>36-60</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>>60</td>
<td>15</td>
<td>12</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>mean follow up length(months)</td>
<td>52.7</td>
<td>57.6</td>
<td>49.8</td>
<td>21</td>
</tr>
</tbody>
</table>
"Radiomics" refers to the extraction and analysis of large amounts of quantitative imaging biomarkers (QIB aka features) from standard medical images, such as CT, PET or MRI, to identify a signature (a group of QIBs) with diagnostic, prognostic or predictive value.
SEGMENTATION AND FEATURES EXTRACTION

Volumetric Segmentation

3D SLICER (https://www.slicer.org/wiki/Modules:Editor-Documentation#Level_Tracing)

Method: semi-automatic segmentation

Resampling of isotropic voxel images to harmonize the 2 scanners

IBEX: An Open Software Infrastructure Platform

1 Med Phys. 2015 Mar; 42(3): 1341–1353

Features Computation

- GradientOrientHistogram
- GrayLevelCooccurrenceMatrix
- IntensityDirect
- IntensityHistogram
- IntensityHistogramGaussFit
- NeighborIntensityDifference
- Shape

Features Selection

Importing Images

1135 Features
- Shape based
- Intensity based
- Texture based
TWIST1 system based on KNN algorithm

- distributes the original sample into training and test set
- selects the most significant features (37)

The 2-layers feed forward back propagation algorithm was used twice inverting the training/testing set.

The final results were a mean sensitivity of 77.38 %, a mean specificity of 94.12 % and a mean global accuracy of 85.75% in distinguishing patients with Volume Reduction from the others.

<table>
<thead>
<tr>
<th>FF_Bp 4 abAUTO(1)</th>
<th>FF_Bp 4 baAUTO(4)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recs</td>
<td>Volumetric</td>
<td>Stability/</td>
</tr>
<tr>
<td></td>
<td>Reduction</td>
<td>Volumetric</td>
</tr>
<tr>
<td></td>
<td></td>
<td>increase</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Semeion Research Centre
CONCLUSIONS

GOOD POTENTIAL OF MACHINE LEARNING COUPLED WITH RADIOMICS IN DISTINGUISH, BEFORE RADIOSURGERY, PATIENTS WITH VOLUME REDUCTION FROM PATIENTS WITHOUT.

LIMITS:
Uneven and short follow-up
Possible overfitting
Only one classificator was used

FUTURE DEVELOPMENTS:
In order to expand our dataset we have started collaboration with other Hospital
Possibility to consider other boundary variables and the role of Dosiomic
Possibility to predict the role of Pseudoprogession
RADIOMIC: PREDICTION OF ACOUSTIC NEUROMA RESPONSE TO THE CYBERKNIFE TREATMENT

THANK YOU FOR YOUR INTEREST!

For questions or comments please contact:

Isa.BossiZanetti@cdi.it
NataschaClaudia.Damico@cdi.it